Classical Invariants and 2-descent on Elliptic Curves

نویسنده

  • John Cremona
چکیده

The classical theory of invariants of binary quartics is applied to the problem of determining the group of rational points of an elliptic curve deened over a eld K by 2-descent. The results lead to some simpliications to the method rst presented in (Birch and Swinnerton-Dyer, 1963), and can be applied to give a more eecient algorithm for determining Mordell-Weil groups over Q, as well as being more readily extended to other number elds. In this paper we mainly restrict to general theory, valid over arbitrary elds of characteristic neither 2 nor 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

1 2 A ug 2 00 9 MINIMISATION AND REDUCTION OF 2 - , 3 - AND 4 - COVERINGS OF ELLIPTIC CURVES

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

Minimisation and Reduction of 2-, 3- and 4-coverings of Elliptic Curves

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer

1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...

متن کامل

On Invariants of Elliptic Curves on Average

Abstract. We prove several results regarding some invariants of elliptic curves on average over the family of all elliptic curves inside a box of sides A and B. As an example, let E be an elliptic curve defined over Q and p be a prime of good reduction for E. Let eE (p) be the exponent of the group of rational points of the reduction modulo p of E over the finite field Fp. Let C be the family o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2001